
COMPASS: Rotational Keyboard on Non-Touch
Smartwatches

Xin Yi1, Chun Yu1†, Weijie Xu1, Xiaojun Bi2, Yuanchun Shi1

1Key Laboratory of Pervasive Computing, Ministry of Education
Tsinghua National Laboratory for Information Science and Technology

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
2Department of Computer Science, Stony Brook University, Stony Brook, NY, United States

{yix15,xu-wj13}@mails.tsinghua.edu.cn {chunyu,shiyc}@tsinghua.edu.cn xjunbi@gmail.com

(a) (b) (c) (d) (e)

Figure 1: A storyboard illustrating a user entering “an” with COMPASS. (a) The keyboard shows three cursors at initial locations,
the user rotates the bezel counterclockwise to hit ‘a’ with a nearby cursor. (b) The user presses the physical button to select ‘a’. (c)
Upon selection, the keyboard changes the location of the cursors so as to minimize the expected rotational distance for the next
key. As there is already a cursor on ‘n’, the user presses again to select ‘n’ without rotating. The color of each key indicates the
probability of it being the next selection. (d) The user long-presses the physical button to enter word selection mode. Dimmed
keys are not possible for the next selection. (e) The user presses the button to select “an”.

ABSTRACT
Entering text is very challenging on smartwatches, especially
on non-touch smartwatches where virtual keyboards are un-
available. In this paper, we designed and implemented COM-
PASS, a non-touch bezel-based text entry technique. COM-
PASS positions multiple cursors on a circular keyboard, with
the location of each cursor dynamically optimized during typ-
ing to minimize rotational distance. To enter text, a user rotates
the bezel to select keys with any nearby cursors. The design
of COMPASS was justified by an iterative design process and
user studies. Our evaluation showed that participants achieved
a pick-up speed around 10 WPM and reached 12.5 WPM after
90-minute practice. COMPASS allows users to enter text on
non-touch smartwatches, and also serves as an alternative for
entering text on touch smartwatches when touch is unavailable
(e.g., wearing gloves).

† denotes the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2017, May 06-11, 2017, Denver, CO, USA
© 2017 ACM ISBN 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025454

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces; Input devices and strategies (e.g., mouse,
touchscreen)

Author Keywords
Text entry; smartwatch; multiple cursors; circular keyboard;
non-touch.

INTRODUCTION
Smartwatches have become increasingly popular in the Post-
PC computing era. They are easy-to-access, always-on and
could be fashionable decorations if well designed. To meet
the diverse market demand, a variety of smartwatches have
been designed and manufactured, which can be classified as
either touch or non-touch smartwatches. The former has a
touch-sensitive screen and supports touch interaction (e.g.,
Apple Watch [3]), while the latter is equipped with a non-
touch display in order to reduce power consumption and to be
more affordable. For example, the Pebble Time watch [6] uses
a non-touch e-ink color display, with an up to 7 day battery
life.

To better serve users, a smartwatch is enhanced with more and
more interactive features. Entering text, which is one of the
most performed tasks in mobile computing, is one of the most

desired features on smartwatches. However, it has remained
a big challenge, especially for non-touch smartwatches, on
which the typical virtual keyboard is not supported.

One approach of entering text on non-touch smartwatches is
to use speech (e.g. MOTO 360 [5]). However, it suffers from
two major problems: 1) it is socially inappropriate to input
with voice in some situations (e.g., at meetings or classrooms);
2) speech-based input is error-prone especially in noisy envi-
ronments. Although a considerable amount of effort has been
investigated in improving smartwatch text entry (e.g. [12, 16,
22, 27, 34]), very little of them is for non-touch smartwatches.
In this paper, we aim to address this important but overlooked
problem.

In this paper, we designed and implemented COMPASS, a
bezel-based, multi-cursor text entry technique for non-touch
smartwatches. It works for non-touch smartwatches, and also
for touch smartwatches when touch input is unavailable (e.g.,
wearing gloves). To enter text, users rotate the bezel to hit keys
on the circular keyboard with a cursor. To minimize rotational
distance, the location of each cursor is dynamically optimized
after each key selection according to the probability of next
keys needed.

We followed an iterative design process in designing COM-
PASS. In the first user study, we compared the text entry per-
formance and user preference with different cursor placement
strategy and number of cursors. Results showed that a dynam-
ic strategy with three cursors was optimal. We then further
improved this technique according to the user behavior data,
and evaluated its usability in the second user study. Users
achieved a pick-up speed of 9.3 WPM, and after 90 minutes of
practice, they achieved 12.5 WPM without sacrificing accura-
cy. Expert users even reached 15.4 WPM in the last block. We
concluded that COMPASS is a promising text entry method
for non-touch smartwatches and other rotational interfaces.

RELATED WORK

Interaction Techniques for Smartwatches
A number of text entry techniques have been proposed to fa-
ciliate text entry on touch smartwatches. Some techniques
achieved accurate character-level input by iterative selection
(e.g. ZoomBoard [27], SwipeBoard [12] and SplitBoard [19])
or using a call-out to show the finger occluded area (e.g. ZShift
[22]). The text entry speed reached 9.3 WPM [27], 19.6 WPM
[12], 15 WPM [19] and 9.1 WPM [22] respectively. Alter-
natively, some techniques provided efficient word-level input
by incorporating input decoders. (e.g. VelociTap [34] and
WatchWriter [16] reached 41 WPM and 22 WPM respective-
ly). Noticeably, all these techniques adopted a QWERTY
keyboard. However, the limitation of touchscreen-based tech-
niques lies in a tradeoff between the screen occupation and
input precision. Besides, touchscreens is even unavailable in
certain scenarios (e.g. wearing gloves). Funk et al. [14] used a
touch-sensitive wristband to support text entry on smartwatch-
es. However, the speed reached only about 3 WPM.

To address this problem, some researchers sought to enhance
the interaction capability for non-touch smartwatches. For
example, Arefin et al. [8] designed a set of non-touchscreen

gestures to enable interaction with the smartwatch in mid-air.
Abracadabra [17] used magnetometers to enable wireless, un-
powered and high fidelity finger input for smartwatches. And
Serendipity [35] used the motion sensors of the smartwatch
to sense finger gesture. Plaumann et al. [28] used a bezel to
support list selection based on a circular alphabetical menu.
Kerber et al. [20] compared bezel interaction with digital
crown and touch, where the bezel showed worse performance
than the latter two. Noticeably, none of these techniques has
been applied to the scenario of text entry. In this regard, we
seek to explore the possibility of text entry on off-the-shelf
non-touch smartwatches in this paper.

Circular Keyboard Techniques
Besides conventional QWERTY layout, there are also some
keyboards that use a circular layout. Although less common,
the circular layout poses some advantages in certain scenarios
(e.g. rotational interfaces [29], personal area on tabletop [18],
or to minimize the travelling distance [25, 32]).

Cirrin [25] used a circular keyboard to support pen input using
word-level gestures. The order of the characters were opti-
mized to minimize the stroke distance. To reduce the difficulty
of selecting a letter, Cechanowicz et al. [11] modified Cirrin by
expanding the characters as the stylus approached it. However,
the text entry performance dropped due to a higher error rate.
These two keyboards optimized the order of the characters for
efficiency. However, at the same time, this would result in
more cognitive load for users, which may limit the text entry
speed.

Alternatively, some techniques used an alphabetic ordered list
of characters to aim the pick-up speed. BubbleCircle [18] used
a circular keyboard on a tabletop displays, and dynamically
adjusted the key sizes according to user’s input. Shoemaker et
al. [32] proposed a circular keyboard for text entry on large
wall displays. User moves the pointer to highlight the desired
character and presses a button to select it. TUP [29] places
the characters at fixed positions on the wheel, and user press a
select key to select the highlighted character.

Multi-Cursor Techniques for Target Acquisition
Using multiple cursors to assist target acquisition has been
extensively studied in the scenario of Graphical User Interface
(GUI). These techniques usually placed multiple cursors on
the screen, which move synchronously following the mouse.
A user can point to a target use the cursor that is closest to
it. This posed an inherent advantage that the travel distance
between targets in cursor-based interfaces can be significantly
reduced. Ninja Cursors [21] uniformly distributed multiple
cursors on the screen, and used a waiting queue algorithm to
resolve the ambiguity. Similarly, satellite cursor [36] places a
cursor in the vicinity of every target, and used an “aggregate
and expand algorithm” to avoid ambiguity.

Some researchers incorporate eye-gaze to help resolve the
cursor ambiguity when multiple targets were selected at the
same time. Raiha et al. [31] augmented the Ninja Cursors by
using eye-gaze to select the active cursor. Similarly, the Rake
Cursor [10] also used a grid of cursors controlled by a mouse,
and the selection of the active cursor by gaze. However, the

active cursor can only change when a mouse motion event
occurs.

COMPASS: DESIGN AND IMPLEMENTATION
We implemented COMPASS on a Samsung Gear S2 smart-
watch (see Figure 1). The watch has a 1.2" round screen, a
rotational bezel and two physical buttons. The rotational bezel
can detect discrete rotation events. According to our test, the
rotation precision is about 24 levels/360�. As we focus on
non-touch smartwatches, we did not leverage the touchscreen
of this watch. In practice, one can also implement COMPASS
on other hardware as long as it supports rotation and press
interaction (e.g. the digital crown on Apple Watches [3] and
the BMW iDrive controller [4]).

Keyboard Layout
We adopted a circular layout that best fits the rotation inter-
action paradigm. To help users locate the target keys quickly,
the character keys were organized in alphabetical order [29].
Furthermore, we flipped the characters on the lower half of
the keyboard inside out (‘H’ to ‘S’) to help users visually
recognize these characters (see Figure 1a).

An advantage of the circular layout is that different from con-
ventional QWERTY keyboards (e.g. [16]) and T9 keyboards
(e.g. the system keyboard on Samsung Gear S2 smartwatch),
it allows the remaining screen area to be in a round shape.
Therefore, the screen contents can be scaled to fit in the inner
area without changing the look-and-feel. We can also use a
transparent keyboard to further avoid shrinking the contents.

Interaction Design
The design goal of COMPASS is to enable text entry on smart-
watches without using the touchscreen. To achieve this, we
displayed cursors along the circular keyboard. During text
entry, users rotate the bezel of the smartwatch to move the
cursors, and press the physical button to select characters and
words [29, 32]. Compared to touchscreen-based keyboards,
this design avoided the fat-finger problem, and provides tactile
feedback during rotation. Considering that long rotations were
slow and hard to perform, we employed a multi-cursor inter-
action paradigm, where multiple cursors move and select the
characters simultaneously according to user’s control. Figure 1
shows the storyboard illustrating a user entering words using
COMPASS. The interaction is as follows:

1. Users rotate the bezel to hit the target key with any nearby
cursors, and press the physical button on the side of the
smartwatch to select the character.

2. Upon selection, COMPASS showed three candidate words
according to the current input on the bottom of the inner
area.

3. Users long press the physical button to switch to word selec-
tion mode, where there is only one cursor. We empirically
set the time threshold of long press to be 250 ms according
to our pilot study.

4. If there is only one candidate word left, the word would be
automatically entered. Otherwise, users rotate the bezel to
hit the target word with the cursor, and then press the button

again to confirm the selection. COMPASS automatically
appends a space after the selected word.

5. During typing, users can flick their wrists to delete the last
entered word after selection, or the last character during
entering a word.

Flicking Gesture
During text entry, we designed wrist flick as an action to trigger
deletion. Flicking is a system gesture for Android Wear [7]
and Tizen OS, which is natural and easy to perform.

We recognized the flick gestures based on the gyroscope data
from the Samsung Gear S2 smartwatch, which reports the
rotation of the wrist at about 100Hz. Figure 2 illustrates the
signal during a typical flicking gesture. According to empirical
evidence, we used a 500 ms time window with two thresholds
(±550�/s) on the X dimension data to recognize the gesture.

Figure 2: Illustration of the gyroscope data during a flicking
gesture.

Prediction Algorithm and Language Model
As with any modern smart keyboards, we employed a predic-
tion algorithm in COMPASS to resolve the ambiguity in user’s
input. We employed Goodman et al.’s Bayesian model [15] to
predict the target word. Given user’s input I, it calculates the
probability of a word W in a predefined dictionary as:

P(W |I) µ P(I|W)⇥P(W) (1)

As COMPASS used multiple cursors to select characters simul-
taneously, we have

I =

0

BB@

I11 I12 · · · I1n
I21 I22 · · · I2n
...

...
. . .

...
IN1 IN2 · · · INn

1

CCA (2)

where N is the number of cursors, and n is the length of the
input. As with many smart keyboard techniques, we assumes
that users generate no insertion or omission errors, and we
treat each input point independently (e.g. [13, 15]), therefore:

P(I|W) =
n

’
i=1

P(I·i|Wi) (3)

where I·i refers to the ith column of I, and Wi is the ith character
of W . Meanwhile, we set

P(I·i|Wi) =

⇢
1 if 91  j  N s.t. I ji =Wi
0 otherwise (4)

This assumption is based on the observation in pilot study that,
users rarely makes mistake when selecting characters. In this
way, COMPASS behaves similar with an ambiguous keyboard
(e.g. T9 keyboard).

We used the top 15,000 words as well as their corresponding
frequency in the American National Corpus [2] as our corpus.
According to Nation et al. [26], this would be sufficient to
cover over 95% of the common English words.

Visual Hint
When entering text using COMPASS, one of the critical factors
that affect the text entry performance is the ease to visually
acquire the target key. In this regard, we designed visual cues
to help users find their target keys during text entry.

Assuming the user has generated the input I (see Equation 2),
we denote S(I) as the set of all words W in the dictionary that
P(I|W1W2...Wn) , 0. In other words, S(I) contains all words
whose prefix matches the input I. Now, for each character c in
the alphabet, the probability of it being the following character
can be calculated as:

P(c) =
ÂW2S(I)^Wn+1=c P(W)

ÂW2S(I) P(W)
(5)

Based on P(c), we designed two kinds of visual cues, as
showed in Figure 3. First, the keys whose probability was zero
would be dimmed to avoid distracting the user (e.g. ‘F’ and
‘T’). Second, we adjusted the brightness of the remaining keys
according to their probability. The higher the probability is,
the lighter the key color would be (e.g. ‘P’ vs. ‘A’). During
text entry, the visual cues automatically updates upon each
character selection. According to our interview, this design
indeed helped users to find the target keys (especially those
with high probability) more easily.

Figure 3: Visual cues to help users find the target keys. Impos-
sible keys are dimmed, while others are highlighted according
to their possibility.

Cursor Placement Strategy
A key problem of COMPASS arise from the multi-cursor
paradigm. On the one hand, if the relative location of the
cursors keep fixed, users may be able to program their rota-
tion behavior in advance. On the other hand, dynamically
optimizing the position of the cursors could reduce the rota-
tion distance, thus potentially increasing the text entry speed.
However, this dynamic interface may introduce more cogni-
tive load for users at the same time. Therefore, whether or

not to employ a dynamic cursor placement strategy is worth
exploring.

To address this problem, we designed two variations of COM-
PASS: S-COMPASS (S for Static) and D-COMPASS (D for
Dynamic). The two techniques share the same design except
for the cursor placement strategy.

S-COMPASS
The design goal of S-COMPASS is to keep a static cursor
placement to reinforce users’ motor programming ability, but
at the cost of a presumably longer rotation distance. Consider
that we used N cursors, it is obvious that the cursors should
be placed evenly along the keyboard to minimize the expected
rotation distance. Given the static cursor placement strategy,
S-COMPASS functions similar with an ambiguous keyboard,
where there are N characters on each “key”.

D-COMPASS
The design goal of D-COMPASS is to dynamically adjust the
position of the cursors according to user’s input, such that the
expected distance of the next rotation is minimized. During
typing, the location of the cursors changed upon each char-
acter selection. Compared with S-COMPASS, D-COMPASS
could potentially increase the text entry speed by reducing the
rotation distance.

Each time the user selects a character, the algorithm searches
all the CN

26 possible cursor locations, and selects the one with
the lowest Expected Next Rotation Distance (ENRD), which
was defined as:

ENRD = Â
c2c

dis(c)⇥P(c) (6)

where c is the set of all 26 characters, P(c) was calculated
according to Equation 5, and dis(c) is the rotation distance
that needed to hit key c with the closest cursor. For example,
in Figure 3, dis(E) = 2.

Ideally, the above optimization would minimize the expected
distance of next rotation. However, as Equation 6 is a weighted
distance, in practice, the optimization tended to place the
cursors around keys with highest frequencies, and cause these
keys to be selected at the same time (see Figure 4a). As
a result, the number of remaining keys after each selection
would not drop as fast as expected. To alleviate this problem,
we adopted an intuitive method that prevents high-frequency
keys to be selected at the same time: Instead of considering all
CN

26 possibilities, we pruned the candidates that would cause
any two of the N characters with the highest P(c) to be selected
at the same time (see Figure 4b).

This heuristic restriction helps the optimization procedure to
avoid grouping high probability keys together. With a small
sacrifice of the rotation distance, it may decrease the entropy
of the remaining text, and thus increased the overall typing
performance. According to our pilot study, optimizing rotation
distance was also more perceived and appreciated by users
than optimizing ambiguity.

(a) (b)

Figure 4: Example of cursor placement (a) before applying
restriction, ‘U’, ‘E’ and ‘I’ would be selected at the same time
(b) after applying restriction, ‘U’, ‘E’ and ‘I’ could not be
selected at the same time.

Number of Cursors
It is intuitive that the number of cursors (N) is crucial for the
performance of every multi-cursor techniques [21]. On the
one hand, the more cursors we use, the shorter distance users
would have to rotate during text entry. On the other hand, too
many cursors would result in two problems: 1) as multiple
characters are selected by the cursors simultaneously, this
would let to input ambiguity 2) too many cursors may spam
the user interface, causing visual and cognitive burden for
users [30]. Therefore, we conducted a simulation to determine
the range of possible N that is applicable. Metrics include
rotation distance, which is indicative of the text entry speed,
and input ambiguity, which would affect the input accuracy.

Simulation Design
We defined two metrics: 1) Distance Per Rotation (DPR),
which is average distance for each rotation when entering a
word, normalized by key size. A greater DPR suggests longer
distance for each rotation, and presumably longer input time.
2) Candidate Coverage (CC) measures the ratio of the words
in the dictionary that could appear in the top three candidates
given user’s input. A higher CC implies that the technique is
more accurate in input disambiguation.

We tested all words in the dictionary for both S-COMPASS
and D-COMPASS. For each word, we simulated user’s input
by assuming that the user would always use the nearest cursor
to hit the keys. We tested the number of cursors (N) from 1 to
5. For each level of N, we measured the average DPR of each
word as well as the CC.

Results
Figure 5 shows the simulation results. As expected, for
S-COMPASS and D-COMPASS, DPR and CC both drop
monotonously with increasing N, suggesting a tradeoff be-
tween rotation distance and input ambiguity.

Generally, S-COMPASS yielded a slightly higher CC, but a
significantly higher DPR than D-COMPASS. Interestingly, the
DPR of S-COMPASS ranged from 1.34 to 3.10 for N � 2, but
dynamically jumped up to 7.13 for N = 1, suggesting a much
further rotation distance. Meanwhile, N = 5 only decreased
DPR by 0.29 comparing with N = 4, but decreased CC by 3%.

Figure 5: Simulation result. SRD and CC for each N and
technique.

Therefore, we considered the applicable number of cursors for
S-COMPASS to be from 2 to 4.

The results on D-COMPASS are similar. The DPR ranged
from 0.85 to 1.69 for N � 2, and jumped up to 3.61 for N =
1. Meanwhile, N = 5 yield the same DPR with N = 4, but
decreased CC by 3%. Therefore, the applicable number of
cursors for D-COMPASS was also from 2 to 4.

EXPERIMENT 1: COMPARING DIFFERENT DESIGNS
So far, we have proposed several design alternatives for COM-
PASS, each representing a tradeoff between certain design
goals. In this section, we conducted a user study to compare
the performance and user preference of these designs with
two main goals: 1) determine the optimal number of cursors
for both S-COMPASS and D-COMPASS in terms of text entry
performance and user preference; 2) compare the performance
and subjective feedback of S-COMPASS and D-COMPASS.

Participants
We recruited 12 participants from the campus (8 male, 4 fe-
male), with an average age of 22.7 (SD = 2.0). None of them
had used the Samsung Gear S2 smartwatch before. Each
participant was compensated $12.

Procedure
We used a within-subjects, two-factor design. One factor is
Technique with two levels (S-COMPASS and D-COMPASS),
and the other is number of cursors (N) with three levels (2, 3
and 4). Participants were seated during the experiment. They
were asked to complete two sessions of text entry tasks, corre-
sponding to S-COMPASS and D-COMPASS respectively. In
each session, they completed three blocks of tasks, each cor-
responds to a level of N. The order of different Technique
and N was counterbalanced. In each block, they were first
allowed three minutes to familiarize themselves with the tech-
nique. They then entered 5 phrases randomly sampled from
the Mackenzie and Soukoreff phrase set [24]. A two-minute
break was enforced between blocks. And after the experiment,
questionnaires and interviews were carried out to gather their
subjective feedback.

Figure 6 shows a screenshot of the experiment platform. The
task phrase was showed in the middle of the screen, with the

Figure 6: Experiment platform.

entered text showed below it. Participants were instructed to
type “as quickly and as accurately as possible”. They were
free to correct the errors or leave them uncorrected. After
finishing each phrase, they swipe right on the touchscreen to
continue to the next phrase.

Results
Across all participants, we gathered 2 Techniques ⇥ 3 N ⇥
5 phrases⇥12 participants = 360 phrases.

Speed
We calculated the text entry speed similar with Mackenzie [1]:

WPM =
|W |�1

T
⇥60⇥ 1

5
(7)

where |W | is the length of the final transcribed string, and T is
the elapsed time in seconds from the first press to the selection
of the last word. Figure 7a shows the text entry speed for
different techniques and N. RM-ANOVA found D-COMPASS
to be significantly faster than S-COMPASS (F1,11 = 100.7, p <
.0001).

(a) (b)

Figure 7: (a) Text entry speed and (b) error rate for different
techniques and N, black bar indicated one standard deviation.

For S-COMPASS, WPM slightly increased with increasing
N, with the average speed being 6.6 (SD = 1.7), 6.9 (SD =
2.0) and 7.3 (SD = 1.9) for N = 2, 3 and 4 respectively. This
confirmed that with more cursors, the rotation distance could
be shortened. On contrary, for D-COMPASS, WPM slightly
drops with increasing N, with the average speed being 8.7 (SD
= 2.0), 8.4 (SD = 2.2) and 8.0 (SD = 2.1) for N = 2, 3 and 4
respectively. We speculate that this was due to the extra time
to locate the cursors after adaptation. A significant effect of N
was found on WPM for both S-COMPASS (F2,22 = 3.42, p =
.05) and D-COMPASS (F2,22 = 7.04, p < .01).

Error Rate
We calculated error rate using CER [33], Figure 7b shows the
error rate for different techniques and N. As with previous
findings, users tended to leave few errors in the final tran-
scribed string (e.g. [23, 33]), with the average error rate for
all six conditions under 0.17%. As expected, no significant
effect of Technique was found on CER (F1,11 = 0.00, p = .99).
Moreover, no significant effect of N on CER was found for
either S-COMPASS (F2,22 = 0.66, p = .52) or D-COMPASS
(F2,22 = 1.00, p = .38).

Subjective Ratings
We collected participants’ subjective ratings for each condi-
tion using a 5-point Likert scale questionnaire. Dimensions
included perceived speed, perceived accuracy and overall pref-
erence. Table 1 shows the average ratings. D-COMPASS was
showed to significantly outperformed S-COMPASS in terms
of all dimensions (perceived speed: F1,11 = 12.2, p < .01, per-
ceived accuracy: F1,11 = 11.3, p < .01, overall preference:
F1,11 = 26.2, p < .001).

Technique S-COMPASS D-COMPASS
N 2 3 4 2 3 4

Perceived Speed 2.4 (0.9) 3.2 (0.8) 3.7 (0.6) 3.5 (1.1) 4.3 (0.6) 4.2 (0.6)
Perceived Accuracy 3.6 (1.1) 4.0 (0.8) 3.8 (0.7) 4.2 (0.8) 4.5 (0.7) 4.0 (0.8)
Overall Preference 2.2 (1.1) 3.2 (0.9) 3.3 (0.8) 3.3 (1.0) 4.5 (0.5) 3.8 (0.7)

Table 1: Average ratings for different conditions, standard
deviations showed in parenthesis. 5 means the most positive
and 1 means the most negative.

For both S-COMPASS and D-COMPASS, Friedman test found
a main effect of N on perceived speed (c2(2) = 17.1, p < .001
and c2(2) = 7.31, p < .05) and overall preference (c2(2) =
8.34, p < .05 and c2(2) = 10.3, p < .01). However, no signif-
icant effect of N was found on perceived accuracy (c2(2) =
1.92, p = .38 and c2(2) = 2.61, p = .27). Noticeably, for S-
COMPASS, N = 4 yield the highest average score in perceived
speed and overall preference, while for D-COMPASS, N = 3
yield the highest average score among all conditions.

Interaction Statistics
We looked more into users’ text entry behavior by analyzing
the interaction statistics. Figure 8 shows the average Dis-
tance per Rotation (DPR) for each condition. Both Technique
(F1,11 = 1957, p< .0001) and N (F2,22 = 1132, p< .0001) was
found to yield significantly effect on DPR. Consistent with the
simulation result, DPR decreased with increasing N for both
S-COMPASS and D-COMPASS. And for all N, the DPR for
D-COMPASS was less than 50% of that for S-COMPASS. This
confirmed that D-COMPASS effectively reduced the rotation
distance than S-COMPASS.

We then analyzed which interactions takes up the most amount
of time during text entry. Table 2 shows the top 3 interaction-
s with the highest time ratio. Noticeably, for S-COMPASS,
Rotate-Rotate takes up 44.6% of all interactions, which cor-
responds to Figure 8 that users has to rotate a relatively long
distance on average. On contrast, for D-COMPASS, the most
time-consuming interaction was Press-Press, which happens

Figure 8: Average DPR for each condition, black bar indicates
one standard deviation.

when users hit a target without rotating. This highlights that
D-COMPASS effectively decreased the rotation frequency.

Interaction Average Time Frequency Time Ratio
Rotate - Press 0.68 s 21.4% 29.0%
Press - Rotate 0.84 s 17.2% 28.7%

Rotate - Rotate 0.22 s 44.6% 19.0%

(a)

Interaction Average Time Frequency Time Ratio
Press - Press 0.92 s 19.5% 27.0%

Press - Rotate 1.13 s 12.4% 21.0%
Rotate - Press 0.69 s 18.6% 19.1%

(b)

Table 2: Interaction statistics for (a) S-COMPASS and (b) D-
COMPASS, merged from N = 2,3 and 4. Shows the top 3 with
the highest time ratio.

Discussion
Number of Cursors
The number of cursors seemed not to affect text entry per-
formance significantly. For S-COMPASS, WPM slightly in-
creased with N, while for D-COMPASS, WPM slightly drops
with N. Although these differences were statistically signifi-
cant, in both cases, the amplitude of change was very small
(±0.6 WPM). Meanwhile, N did not significantly affect the
error rate or perceived accuracy.

However, subjective preference changed dramatically with
N. For S-COMPASS, N = 4 yielded the highest score in per-
ceived speed and overall preference, and for D-COMPASS,
N = 3 yielded the highest score in all dimensions, which are
all significant. Therefore, we considered 4 and 3 to be the
optimal number of cursors for S-COMPASS and D-COMPASS
respectively.

S-COMPASS vs. D-COMPASS
Interestingly, both objective and subjective results favors D-
COMPASS as opposed to S-COMPASS. The text entry speed
of D-COMPASS was 32%, 22% and 15% higher than that of S-
COMPASS with increasing N (see Figure 7a), and there was no
significant difference in error rate. Due to the dynamic cursor

placement strategy, the rotation distance for D-COMPASS was
less than 50% of that for S-COMPASS (see Figure 8).

In terms of subjective feedback, D-COMPASS significantly
outperforms S-COMPASS in all dimensions (perceived speed,
perceived accuracy and overall preference). During interview,
most of the participants (11/12) preferred D-COMPASS to S-
COMPASS, only 1 participant preferred S-COMPASS. There-
fore, we considered D-COMPASS to be more applicable.

Improving COMPASS
So far, we have showed that in terms of text entry performance
and user preference, D-COMPASS with three cursors was
the best technique among the six alternatives. However, the
interaction statistics and subjective feedback suggested that
there are still space for further improving the performance.

Table 2b shows that for D-COMPASS, Press-Press was the
most frequent interaction, and took the most amount of time.
This usually happens when there are only a few possible keys
left. For example, when entered “welc” for “welcome”, users
has to press three times without rotating for ‘o’, ‘m’ and ‘e’.
And in our interview, 6/12 participants suggested that the text
entry process could be accelerated in this case. To this end, we
improved D-COMPASS by incorporating an auto-completion
algorithm.

We implemented the auto-completion algorithm using a similar
method as in the Android keyboard [9]. When calculating
P(I|W), we considered all W whose length are not less than I,
and augmented Equation 3 to the formula below:

P(I|W) =
n

’
i=1

P(I·i|Wi)⇥am�n (8)

where m is the length of W (m � n). Here, a could be inter-
preted as the penalty to prevent long, high-frequency words
from dominating short, low-frequency words. For example,
if the frequency of “and” is higher than “an”, “and” would
always appear in front of “an”. We tested alpha ranging from
0.0 to 1.0 in simulation, and set a = 0.7 that yields the best
compromise between aggressiveness and candidate coverage.

EXPERIMENT 2: PERFORMANCE EVALUATION
In this section, we conducted a second user study to evalu-
ate the performance of the improved COMPASS technique.
Henceforth, we referred to COMPASS as the D-COMPASS
with three cursors and auto-completion algorithm. Participants
were asked to perform text entry tasks using the technique. We
were interested in the pick-up usability of COMPASS, and the
text entry performance that users could achieve with practice.

Participants
We recruited another 10 participants from the campus, with an
average age of 22.0 (SD = 1.5). None of them has experienced
a rotational interface before (e.g. the smartwatch we used in
this experiment). Each participant was compensated $30.

Procedure
We used the same experiment platform as in the previous study
(see Figure 6). Participants were seated in a chair during the
experiment. They were first allowed up to three minutes to

familiarize themselves with the technique. They then complet-
ed 8 blocks of text entry tasks. In each block, they entered 10
phrases randomly chosen from the Mackenzie and Soukoreff
phrase set [24]. A three-minute break was enforced between
blocks. Participants were instructed to type “as fast and as
natural as possible”. They were free to correct the input or
leave the error uncorrected. Each block took about eight min-
utes, and totally, the tasks took about 90 minutes. After the
final block, we carried out interviews to gather their subjective
feedback.

Results
Across all participants, we gathered 8 blocks⇥10 phrases⇥
10 participants = 800 phrases.

Text Entry Speed

Figure 9: Text entry speed in each block, black line shows the
average speed across participants.

Figure 9 shows each participant’s speed and the average speed
in each block. Participants’ speed increased monotonously
with block, suggesting a consistent learning trend. The average
speed was 9.3 WPM (SD = 2.2) in block 1 and 12.5 WPM
(SD = 2.5) in block 8, which was an increase of 34%. The top
three participants with highest speed achieved an average of
11.9 WPM in the first block, and 15.4 WPM in the last block.
A significant effect of Block was found on text entry speed
(F7,63 = 48.0, p < .0001).

Notice that in Experiment 1, participants only reached 8.4
WPM when using D-COMPASS with three cursors. This im-
provement suggested that auto-completion may be helpful
for increasing the performance of COMPASS. Although this
speed was lower than word-level techniques using a miniature
QWERTY keyboard [16]. We consider it still important as
COMPASS used only rotation and button pressing, which is
inevitably slower than using touchscreens. Moreover, WPM
seemed not to stop increasing in block 8, suggesting that users
may achieve higher text entry speed with more practice.

Error Rate
Figure 10 shows each participant’s error rate and the average
error rate in each block. Consistent with the result in Exper-
iment 1, participants left few errors in the final transcribed
phrase. There were an average of 4.6 (SD = 3.3) deletions
for each participant in each block. In all 800 phrases, only 4
phrases yielded a CER > 0. As expected, no significant effect
of Block was found on error rate (F7,63 = 0.81, p = .58).

Figure 10: Error rate in each block, black line shows the
average speed across participants.

Interaction Statistics
To examine whether user’s interaction behavior evolved with
practice, we analyzed the interaction statistics. We were in-
terested in: 1) Time taken to visually acquire the target key,
which is indicative of the familiarity of the keyboard layout;
2) the usage of the auto-completion feature.

Figure 11: Average Press-Rotate and Press-Press time in each
block, bar shows one standard deviation.

Ideally, the time taken to locate the target key should be mea-
sured by analyzing the eye-gaze data. Considering this im-
practical, we resort to use two other metrics that is measurable:
the average time of Press-Rotate and Press-Press. These two
values measure the time elapse from the update of the cursors
to the next interaction action, which could approximate the
time taken to find the target key.

Figure 11 shows the average interaction time for these two
interactions in each block. Generally, the average time for
Press-Rotate and Press-Press was very close, confirming the
consistency of the two metrics. Both time dropped with block,
suggesting that with more practice, users could spent less time
searching for the target key. In the first block, the average
time for Press-Rotate and Press-Press were 1.07 s (SD =
0.26) and 1.08 s (SD = 0.27) respectively. And in block 8,
they dropped to 0.81 s (SD = 0.14) and 0.81 s (SD = 0.22)
respectively. Significant effect of Block was found on both
times (F7,63 = 14.9, p < .0001 and F7,63 = 11.8, p < .0001).

To quantify users’ adoption of the auto-completion feature, we
defined SPC (Selection Per Character) as a metric, which can
be calculated as:

SPC =
|Nselection|

|TranscribedText| (9)

where |Nselection| is the total number of Press and Long Press,
and |TranscribedText| is the length of the final transcribed
string. A lower SPC indicates that the user used the auto-
completion feature more frequently, thus spent less effort on
selecting characters and words.

Figure 12: Average SPC in each block, bar shows one standard
deviation.

Figure 12 shows the average SPC in each block. SPC dropped
with block, suggesting that with more practice, participants
used the auto-completion feature more frequently. In the first
block, the average SPC were 1.16 (SD = 0.09). While in block
8, it dropped to 1.09 (SD = 0.05). Significant effect of Block
was found on SPC (F7,63 = 4.32, p < .001). This result also
imples that the accuracy of auto-correction was acceptable to
users, and thus can increase their confidence in using it with
practice.

Subjective Feedback
We now summarize some subjective feedback from user inter-
view. Though participants were new to the circular layout at
first, they could get used to it easily with the help of the visual
cues (highlight and dim).

“The visual cues significantly reduced the effort to locate the
target keys.” (P6)

The interaction design (rotation and press) was intuitive and
fitted well with the form factor of the smartwatch.

“Using rotation and press is very clever and intuitive on the
rotary interface of this smartwatch.” (P5)

All participants found the auto-completion feature is helpful
in increasing the text entry speed.

“The auto-completion feature is amazing! Sometimes I only
have to enter half the characters to get the word.” (P10)

After the experiment, some participants even suggested imple-
menting COMPASS in more scenarios.

“I think COMPASS is a great solution for text entry when wear-
ing gloves. I’m also looking forward to using it with the digital
crown on my Apple Watch.” (P3)

Participants felt the flicking gesture easy and accurate to per-
form, while some participants found the Long Press interaction
a bit hard to perform.

“Flick to delete seemed natural to me, but the long press inter-
action is a bit tiring.” (P7)

LIMITATION AND FUTURE WORK
There are several limitations of this work, which we also see
as opportunities for future work.

First, the current prototype of COMPASS was only designed
for entering words that is in the dictionary, as it covers most
of the daily text entry tasks. However, it is also worthwhile for
any real text entry technique to support character-level input
(e.g. passwords) and entering Out-Of-Vocabulary words. In
practice, by treating each individual character as a “word” in
the language model, they are both achievable using the current
mechanism.

Second, the current cursor placement strategy (see Equation 6)
did not fully modelled user’s rotation ability. For example, dur-
ing interview, some participants reported that they felt clock-
wise rotation easier to perform than counterclockwise rotation.
We speculate this was due to they were right-handed users. It
is interesting to further investigate user’s rotation ability, and
to further improve the algorithm of COMPASS. In addition,
although evaluation results showed that the performance of
the heuristic restriction in optimization was acceptable, it is
valuable to further look into the issue of input disambiguation
in a more principled way.

Third, the learning curve in Experiment 2 has not converge yet.
Therefore, the results may not be representative of the final text
entry performance that users could achieve with COMPASS.
Therefore, we plan to conduct a more longitudinal study to
evaluate the performance of COMPASS in the wild.

CONCLUSION
In this paper, we proposed COMPASS, a bezel-based text en-
try technique for non-touch smartwatches. COMPASS placed
multiple cursors along a circular keyboard. Users rotate the
bezel and press the physical button to enter text, while the
position of the cursors were dynamically adjusted to minimize
rotational distance. We followed an iterative design process
with two user studies. In the first experiment, we showed
that dynamically adjusting the position of the cursors showed
outperformed fixing their positions in terms of text entry speed
and subjective preference, and the optimal number of cursors
is three. In the second experiment, we showed that by incorpo-
rating auto-completion algorithms, users could reach a pick-up
speed of 9.3 WPM, and they could improve to 12.5 WPM after
90 minutes of practice. Some participants even reached 15.4
WPM. COMPASS provides a potential solution for text entry
on smartwatches without using the touchscreens, and could be
implemented to other rotational interfaces.

ACKNOWLEDGEMENTS
This work is supported by the National Key Research and De-
velopment Plan under Grant No. 2016YFB1001200, the Natu-
ral Science Foundation of China under Grant No. 61303076
and No. 61272230, Tsinghua University Research Funding
No. 20151080408.

REFERENCES
1. 2016. A note on calculating text entry speed. (2016).
http://www.yorku.ca/mack/RN-TextEntrySpeed.html.

2. 2016. American National Corpus. (2016).
http://www.americannationalcorpus.org/OANC/index.html.

3. 2016. Apple Watch. (2016). http://www.apple.com/watch/.

4. 2016. BMW iDrive. (2016).
http://www.bmw.com/com/en/insights/technology/

technology_guide/articles/controller.html.

5. 2016. Moto 360. (2016).
https://www.motorola.com/us/products/moto-360.

6. 2016. Pebble Watch. (2016). https://www.pebble.com/.

7. 2016. Wrist Gestures. (2016).
https://support.google.com/androidwear/answer/6312406.

8. Shaikh Shawon Arefin Shimon, Courtney Lutton, Zichun
Xu, Sarah Morrison-Smith, Christina Boucher, and Jaime
Ruiz. 2016. Exploring Non-touchscreen Gestures for
Smartwatches. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3822–3833. DOI:
http://dx.doi.org/10.1145/2858036.2858385

9. Xiaojun Bi, Tom Ouyang, and Shumin Zhai. 2014. Both
Complete and Correct?: Multi-objective Optimization of
Touchscreen Keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’14). ACM, New York, NY, USA, 2297–2306. DOI:
http://dx.doi.org/10.1145/2556288.2557414

10. Renaud Blanch and Michaël Ortega. 2009. Rake Cursor:
Improving Pointing Performance with Concurrent Input
Channels. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09). ACM,
New York, NY, USA, 1415–1418. DOI:
http://dx.doi.org/10.1145/1518701.1518914

11. Jared Cechanowicz, Steven Dawson, Matt Victor, and
Sriram Subramanian. 2006. Stylus Based Text Input
Using Expanding CIRRIN. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI
’06). ACM, New York, NY, USA, 163–166. DOI:
http://dx.doi.org/10.1145/1133265.1133299

12. Xiang ’Anthony’ Chen, Tovi Grossman, and George
Fitzmaurice. 2014. Swipeboard: A Text Entry Technique
for Ultra-small Interfaces That Supports Novice to Expert
Transitions. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 615–620. DOI:
http://dx.doi.org/10.1145/2642918.2647354

13. Leah Findlater and Jacob Wobbrock. 2012. Personalized
Input: Improving Ten-finger Touchscreen Typing
Through Automatic Adaptation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA, 815–824.
DOI:http://dx.doi.org/10.1145/2207676.2208520

14. Markus Funk, Alireza Sahami, Niels Henze, and Albrecht
Schmidt. 2014. Using a Touch-sensitive Wristband for
Text Entry on Smart Watches. In CHI ’14 Extended

Abstracts on Human Factors in Computing Systems (CHI
EA ’14). ACM, New York, NY, USA, 2305–2310. DOI:
http://dx.doi.org/10.1145/2559206.2581143

15. Joshua Goodman, Gina Venolia, Keith Steury, and
Chauncey Parker. 2002. Language Modeling for Soft
Keyboards. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (IUI ’02).
ACM, New York, NY, USA, 194–195. DOI:
http://dx.doi.org/10.1145/502716.502753

16. Mitchell Gordon, Tom Ouyang, and Shumin Zhai. 2016.
WatchWriter: Tap and Gesture Typing on a Smartwatch
Miniature Keyboard with Statistical Decoding. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 3817–3821. DOI:
http://dx.doi.org/10.1145/2858036.2858242

17. Chris Harrison and Scott E. Hudson. 2009. Abracadabra:
Wireless, High-precision, and Unpowered Finger Input
for Very Small Mobile Devices. In Proceedings of the
22Nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’09). ACM, New York,
NY, USA, 121–124. DOI:
http://dx.doi.org/10.1145/1622176.1622199

18. Uta Hinrichs, Holly Schmidt, Tobias Isenberg, Mark S
Hancock, and Sheelagh Carpendale. 2008. Bubbletype:
Enabling text entry within a walk-up tabletop installation.
(2008).

19. Jonggi Hong, Seongkook Heo, Poika Isokoski, and
Geehyuk Lee. 2015. SplitBoard: A Simple Split Soft
Keyboard for Wristwatch-sized Touch Screens. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’15). ACM,
New York, NY, USA, 1233–1236. DOI:
http://dx.doi.org/10.1145/2702123.2702273

20. Frederic Kerber, Tobias Kiefer, and Markus Löchtefeld.
2016. Investigating Interaction Techniques for
State-of-the-Art Smartwatches. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’16). ACM, New
York, NY, USA, 2540–2547. DOI:
http://dx.doi.org/10.1145/2851581.2892302

21. Masatomo Kobayashi and Takeo Igarashi. 2008. Ninja
Cursors: Using Multiple Cursors to Assist Target
Acquisition on Large Screens. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08). ACM, New York, NY, USA, 949–958.
DOI:http://dx.doi.org/10.1145/1357054.1357201

22. Luis A. Leiva, Alireza Sahami, Alejandro Catala, Niels
Henze, and Albrecht Schmidt. 2015. Text Entry on Tiny
QWERTY Soft Keyboards. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 669–678. DOI:
http://dx.doi.org/10.1145/2702123.2702388

http://www.americannationalcorpus.org/OANC/index.html
http://www.apple.com/watch/
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/controller.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/controller.html
https://www.motorola.com/us/products/moto-360
https://www.pebble.com/
https://support.google.com/androidwear/answer/6312406
http://dx.doi.org/10.1145/2858036.2858385
http://dx.doi.org/10.1145/2556288.2557414
http://dx.doi.org/10.1145/1518701.1518914
http://dx.doi.org/10.1145/1133265.1133299
http://dx.doi.org/10.1145/2642918.2647354
http://dx.doi.org/10.1145/2207676.2208520
http://dx.doi.org/10.1145/2559206.2581143
http://dx.doi.org/10.1145/502716.502753
http://dx.doi.org/10.1145/2858036.2858242
http://dx.doi.org/10.1145/1622176.1622199
http://dx.doi.org/10.1145/2702123.2702273
http://dx.doi.org/10.1145/2851581.2892302
http://dx.doi.org/10.1145/1357054.1357201
http://dx.doi.org/10.1145/2702123.2702388

23. I. Scott MacKenzie and R. William Soukoreff. 2002. A
Character-level Error Analysis Technique for Evaluating
Text Entry Methods. In Proceedings of the Second Nordic
Conference on Human-computer Interaction (NordiCHI
’02). ACM, New York, NY, USA, 243–246. DOI:
http://dx.doi.org/10.1145/572020.572056

24. I. Scott MacKenzie and R. William Soukoreff. 2003.
Phrase Sets for Evaluating Text Entry Techniques. In CHI

’03 Extended Abstracts on Human Factors in Computing
Systems (CHI EA ’03). ACM, New York, NY, USA,
754–755. DOI:http://dx.doi.org/10.1145/765891.765971

25. Jennifer Mankoff and Gregory D. Abowd. 1998. Cirrin:
A Word-level Unistroke Keyboard for Pen Input. In
Proceedings of the 11th Annual ACM Symposium on User
Interface Software and Technology (UIST ’98). ACM,
New York, NY, USA, 213–214. DOI:
http://dx.doi.org/10.1145/288392.288611

26. Paul Nation and Robert Waring. 1997. Vocabulary size,
text coverage and word lists. Vocabulary: Description,
acquisition and pedagogy 14 (1997), 6–19.

27. Stephen Oney, Chris Harrison, Amy Ogan, and Jason
Wiese. 2013. ZoomBoard: A Diminutive Qwerty Soft
Keyboard Using Iterative Zooming for Ultra-small
Devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 2799–2802. DOI:
http://dx.doi.org/10.1145/2470654.2481387

28. Katrin Plaumann, Michael Müller, and Enrico Rukzio.
2016. CircularSelection: Optimizing List Selection for
Smartwatches. In Proceedings of the 2016 ACM
International Symposium on Wearable Computers (ISWC
’16). ACM, New York, NY, USA, 128–135. DOI:
http://dx.doi.org/10.1145/2971763.2971766

29. Morten Proschowsky, Nette Schultz, and Niels Ebbe
Jacobsen. 2006. An Intuitive Text Input Method for
Touch Wheels. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’06).
ACM, New York, NY, USA, 467–470. DOI:
http://dx.doi.org/10.1145/1124772.1124842

30. Philip Quinn, Andy Cockburn, and Jérôme Delamarche.
2013. Examining the costs of multiple trajectory pointing

techniques. International Journal of Human-Computer
Studies 71, 4 (2013), 492–509.

31. Kari-Jouko Räihä and Oleg Špakov. 2009.
Disambiguating Ninja Cursors with Eye Gaze. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). ACM, New
York, NY, USA, 1411–1414. DOI:
http://dx.doi.org/10.1145/1518701.1518913

32. Garth Shoemaker, Leah Findlater, Jessica Q Dawson, and
Kellogg S Booth. 2009. Mid-air text input techniques for
very large wall displays. In Proc. GI’09. Canadian
Information Processing Society, 231–238.

33. R. William Soukoreff and I. Scott MacKenzie. 2003.
Metrics for Text Entry Research: An Evaluation of MSD
and KSPC, and a New Unified Error Metric. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’03). ACM, New
York, NY, USA, 113–120. DOI:
http://dx.doi.org/10.1145/642611.642632

34. Keith Vertanen, Haythem Memmi, Justin Emge, Shyam
Reyal, and Per Ola Kristensson. 2015. VelociTap:
Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 659–668. DOI:
http://dx.doi.org/10.1145/2702123.2702135

35. Hongyi Wen, Julian Ramos Rojas, and Anind K. Dey.
2016. Serendipity: Finger Gesture Recognition Using an
Off-the-Shelf Smartwatch. In Proceedings of the 2016
CHI Conference on Human Factors in Computing
Systems (CHI ’16). ACM, New York, NY, USA,
3847–3851. DOI:
http://dx.doi.org/10.1145/2858036.2858466

36. Chun Yu, Yuanchun Shi, Ravin Balakrishnan, Xiangliang
Meng, Yue Suo, Mingming Fan, and Yongqiang Qin.
2010. The Satellite Cursor: Achieving MAGIC Pointing
Without Gaze Tracking Using Multiple Cursors. In
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’10).
ACM, New York, NY, USA, 163–172. DOI:
http://dx.doi.org/10.1145/1866029.1866056

http://dx.doi.org/10.1145/572020.572056
http://dx.doi.org/10.1145/765891.765971
http://dx.doi.org/10.1145/288392.288611
http://dx.doi.org/10.1145/2470654.2481387
http://dx.doi.org/10.1145/2971763.2971766
http://dx.doi.org/10.1145/1124772.1124842
http://dx.doi.org/10.1145/1518701.1518913
http://dx.doi.org/10.1145/642611.642632
http://dx.doi.org/10.1145/2702123.2702135
http://dx.doi.org/10.1145/2858036.2858466
http://dx.doi.org/10.1145/1866029.1866056

	Introduction
	Related Work
	Interaction Techniques for Smartwatches
	Circular Keyboard Techniques
	Multi-Cursor Techniques for Target Acquisition

	COMPASS: Design and Implementation
	Keyboard Layout
	Interaction Design
	Flicking Gesture
	Prediction Algorithm and Language Model
	Visual Hint
	Cursor Placement Strategy
	S-COMPASS
	D-COMPASS

	Number of Cursors
	Simulation Design
	Results

	Experiment 1: Comparing Different Designs
	Participants
	Procedure
	Results
	Speed
	Error Rate
	Subjective Ratings
	Interaction Statistics

	Discussion
	Number of Cursors
	S-COMPASS vs. D-COMPASS
	Improving COMPASS

	Experiment 2: Performance Evaluation
	Participants
	Procedure
	Results
	Text Entry Speed
	Error Rate
	Interaction Statistics
	Subjective Feedback

	Limitation and Future Work
	Conclusion
	Acknowledgements
	REFERENCES

